

MicroMacro Mobile Inc.

Pass API User Guide

Version 2.2.3

March 1, 2023

Version History

1

Version UpdatedAt Note

1.0 June 16, 2015 The first Pass API documentation

2.0 February 1, 2018 Rebuild Pass API from the ground up to be

simpler, more consistent, and truly RESTful

2.1 December 10, 2018 Add pass issue and installation event

callbacks to webhook urls

2.2 Jan 24, 2019 Add get pass status API

2.2.1 July 22, 2019 Correct several typos

2.2.2 May 1, 2022 Add NFC message

2.2.3 March 1, 2023 Add pass status

2

Get Started with the Pass API
With Pass2U Pass API v2, we’ve rebuilt this API from the ground up to be simpler,

more consistent, and truly RESTful style without binding to any programming language.

Retailers, marketing companies, advertisers, third party ticket/coupon providers, or

travel agencies, can easily use Pass API to automate the process of creating and

updating mobile coupons, membership cards, punch cards, event tickets, and travel

passes in existing platforms or systems.

Pass2U uses API keys to authenticate API users. Before starting using Pass API, you

have to go to your Pass2U account page to apply for a 30-days free trial one. If you

want to use this API key after expiration, please pay at the account page to extend for

one year.

3

Fundamental Concepts
The primary concept is that passes are created from issued models. All created

passes are located at unique download URLs which are in form of

https://www.pass2u.net/d/{passId}

Pass API can be used for :
● Create passes with custom data (e.g. ticket/card number, customer name,

email, individual discount...).

● Update passes with specified field changes, so the user’s pass would be

updated automatically via push notification.

● Delete customized attributes or fields of generated passes

Generated download URLs for passes from API can be distributed through your own

channels to customers(e.g. email, SMS, official website, app, facebook...).

How Does It Work?

1. Login to Dashboard, and click Create a Model.

2. Click to select a style you want to distribute to customers. The model’s style

determines the overall default visual appearance of the passes.

3. On the Model Designer page, you can quickly configure model appearance and

the barcode/NFC type. About field type, only Dynamic fields (e.g. member

name, email, Individual discount, points, balances, and etc.) can be customized

4

and used in Pass API. In order to identify and customize this field via Pass API,

the dynamic field should be named with a unique key. Fixed field means all

passes of the model use the same data. Fixed, Points, Secondary Points,
and Credits fields can’t be used in the Pass API.

About barcode/NFC data type, Dynamic – assigned by CSV file or API
(duplicable) or Dynamic – assigned by CSV file or API (not duplicable) can

be used to specify barcode/NFC messages. Dynamic – unique random 8-

digit number is used to generate a unique 8-digit number barcode/NFC

message for every pass created by Pass2U platform automatically. You needn’t

specify a barcode/NFC message in Pass2U API.

5

4. After completing model design, please click Next until the model is issued. The

model appears on the Issuing tab in dashboard and you will get the Model ID of

the model.

5. Use the Model ID to manipulate the Pass API. After the pass is created, you

will get the passId in the API response. Please keep it in your system so that

passes can be managed individually.

API Overview

All API URLs referred in the documentation starting with the following endpoint:

https://api.pass2u.net/v2

HTTP
Method

Path Function

POST /models/{modelId}/passes?utm_source={utm_sour
ce}

Create pass

PUT /models/{modelId}/passes/{passId} Update pass

DELETE /models/{modelId}/passes/{passId}/attributes/{attrib
uteName}

Reset pass attribute

6

DELETE /models/{modelId}/passes/{passId}/fields/{fieldKey} Reset custom field

DELETE /models/{modelId}/passes/{passId}/fields/{fieldKey}/
attributes/{attributeName}

Reset field attribute

GET /models/{modelId}/passes/{passId} Get pkpass file

GET /models/{modelId}/passes/{passId}/status Get pass status

POST /images Upload pass image

Authentication
Pass2U uses a 32-characters length of Base64 encoded string as API key to

authenticate the request. The API key must be included in all API requests to Pass2U

server in header ''x-api-key'' like the following sample:

x-api-key: e6a45207817bb8e9b1f3e67bb696067c

API key allows access to your private data in Pass2U. It should be kept strictly

confidential and not shared with others. If you have to change the API key, please

contact Pass2U Support.

RESTful HTTP Methods

We do our best to use standard HTTP Methods in Pass API:

● Only JSON format is supported as payload of request / response

● Responds with standard HTTP response codes to indicate errors

● Pass2U runs a series of services on AWS

● Pass2U takes PCI DSS (Payment Card Industry Data Security Standard

Standard) to protect your data

API Rate Limits
To help prevent strain on Pass2U’s servers, Pass API imposes rate limits per API key.

There is a limit of 100 requests per second per API for each API key. If a request

7

exceeds the limit, Pass2U will return a 429 error along with a message corresponding

to which limit was exceeded.

About API Parameters
All API parameters of requesting payload are listed in the following tables. Please read

Apple Wallet Package Format Reference and Apple Wallet Pass Programming
Guide before using Pass API.

Top-Level Key attributes

These attributes can be customized and updated when using "Create pass" or

"Update pass" API. Followings are replacement rules of visual appearance:

● If you don’t specify any attributes (e.g. logoText) in request payload, the

attributes will be set by model attributes.

● If you specify attributes in request payload, the attributes will be customized

for the pass.

● "Delete pass attribute" API is used to reset the pass attribute to the default

attribute of the model.

(1) Standard Keys

Name
Type (max
length)

Description

description
string

(1000)

description is what you describe the campaign about the

pass.

organizationName string (100)
organizationName will be shown on the lock screen while the
pass holder is near the specific locations or receives the push

notification.

passcode string (100)

passcode is used to protect the pass download page. If

passcode is assigned, pass download page visitors must input

correct passcode to get the pass

status number(1)
status is used to set the pass status. 1 is normal and 2 is not

accessible.

8

(2) Associated App Keys

Name Type Description

associatedStoreId

entifiers

array of

number (11)

A list of iTunes Store item identifiers for the associated iOS

apps. Only one item is allowed—the item identifier for an iOS

app compatible with the current device. If the app is not

installed, clicking the link opens the App Store and shows the

app. If the app is already installed, clicking the link launches
the app.

appLaunchURL string (255)
A URL to be passed to the associated iOS app when

launched.

associatedPlayIde
ntifiers

array of
string (255)

A list of Google Play identifiers for the associated android

apps. Only one item is allowed—the item identifier for an

android app compatible with the current device. If the app is
not installed, clicking the link opens the Google Play and

shows the app. If the app is already installed, clicking the link

launches the app.

androidAppLaunch

URL
string (255)

A URL to be passed to the associated android app when

launched.

(3) Expiration Keys

Name Type Description

expirationDate string (30)

The date and time in ISO 8601 format to indicate when the

pass expires. The value must be a full date format with hours,

minutes, and seconds with a time zone. Example: 2018-10-

18T16:53:00+08:00

9

voided boolean
Indicates if the pass is void—for example, when a one time
use coupon that has been redeemed, this key should be set as

true . The default value is false.

(4) Relevance Keys

Name Type Description

maxDistance number

Maximum distance in meters from a relevant latitude and
longitude that the pass will be treated as relevant. This number

is compared to the pass’s default distance and the smaller value

is used.

relevantDate string (30)

For event tickets and boarding passes; otherwise optional. Date

and time in ISO 8601 format to indicate when the pass becomes

relevant. For example, the starting time of a movie. The value
must be a full date format with hours, minutes, and seconds with

a time zone. Example: 2018-10-18T16:53:00+08:00

(5) Visual Appearance Keys

Name Type Description

backgroundColor string (18)
Background color of the pass, specified as an CSS-style RGB

triple. Example: rgb(23, 187, 82)

foregroundColor string (18) Foreground color of the pass, specified as a CSS-style RGB

10

triple. Example: rgb(100, 10, 110)

groupingIdentifier string (50)

For event tickets and boarding passes used to group related

passes; otherwise not allowed. Identifier. If a grouping identifier
is specified, passes with the same style, pass type identifier, and

grouping identifier are displayed in a group. Otherwise, passes

are grouped by style and pass type identifier.

labelColor string (18)
Color of the label text, specified as a CSS-style RGB triple.

Example: rgb(255, 255, 255)

logoText string (35) The logoText displayed next to the logo on the pass.

Lower-Level Key attributes

These attributes can be updated by "Create pass" or "Update pass" API. The

Following are replacement rules of visual appearance. For example,

● If you don’t specify an image array in JSON, the pass will use the default

model image.

● Remember to provide all types of images that you want to display on the

pass. If not all images are specified, missing images won’t be displayed even

if default model images are set in Model Designer.

(1) Image Dictionary Keys (Array)

The model style controls which images can be used. The table shows the images

supported by each model style. For details, see Apple Wallet Developer Guide.

Name Type Description

images

an array of

JSON

objects

An array of image objects. Different model style allows

different image types. Please refer to Apple Wallet Developer

Guide.

type string (35)
Image types. Must be one of the following values: icon, logo,
strip, background, thumbnail, footer.

hex string (50) A hexadecimal hash string responded by Upload Pass

11

image API. For example, a hexadecimal hash string could be:

01474ead01d4b4ee6ad3bda2b15013888e74c866.

(2) Pass Structure Dictionary Keys

Name Type Description

transitType string (20)

Required for boarding passes; otherwise not allowed. Type of

transit must be one of the following values: PKTransitTypeAir,

PKTransitTypeBoat, PKTransitTypeBus,

PKTransitTypeGeneric,PKTransitTypeTrain.

(3) Beacon Dictionary Keys (Array)

You can specify an array of data for up to 10 iBeacons per pass. When the card holder
enters within range of a defined iBeacon, a notification will show on the lock screen.

Name Type Description

beacons
array of
JSON

objects

An array of beacon objects. Apple Wallet limits the pass to 10
beacon objects.

major number (16)
Major identifier of a Bluetooth Low Energy location beacon. It

should be a 16-bit unsigned integer.

minjor number (16)
Minor identifier of a Bluetooth Low Energy location beacon. It
should be a 16-bit unsigned integer.

proximityUUID string (36) Unique identifier of a Bluetooth Low Energy location beacon.

relevantText string (255)

Text displayed on the lock screen when the pass is currently

relevant. For example, a description of the nearby location such

as “Store nearby on 1st and Main.”

12

(4) Location Dictionary Keys (Array)

You can specify an array of data for up to 10 locations per pass. When the card holder
enters within range of a defined location, a notification will show on the lock screen.

Pass Type Relevant locations

Boarding Pass With a large radius, on the order of a thousand meters or closer.

Coupon
With a small radius, the current location must be on the order of a hundred

meters or closer.

Event Ticket With a large radius, on the order of a thousand meters or closer.

Store Card
With a small radius, the current location must be on the order of a hundred

meters or closer.

Generic
With a small radius, the current location must be on the order of a hundred

meters or closer.

Name Type Description

locations

array of

JSON

objects

An array of location objects. Apple Wallet limits the pass to 10

location objects.

altitude double Altitude, in meters, of the location.

latitude double Latitude, in degrees, of the location.

longitude double Longitude, in degrees, of the location.

relevantText string (255)

Text displayed on the lock screen when the pass is currently

relevant. For example, a description of the nearby location such

as "Store nearby on 1st and Main."

13

(5) Barcode Dictionary Keys

Please note you can’t use barcode and nfc key at the same time. If a QR code is
required as the alternative identity, please enable “Add QR code as alternative” in
Barcode/NFC Data Area in the Model design page.

Name Type Description

barcode
an JSON

object
A JSON object of barcode.

altText string (50)

Text displayed under the barcode. For example, a human-

readable version of the barcode data in case the barcode can’t

be scanned.

message string (255) Message or payload to be displayed as a barcode.

(6) NFC Dictionary Keys

Please note you can’t use barcode and nfc key at the same time. If a QR code is
required as the alternative identity, please enable “Add QR code as alternative” in
Barcode/NFC Data Area in the Model design page.

Name Type Description

nfc
an JSON

object
A JSON object of NFC.

message string (64) NFC message.

Field Dictionary Keys

14

Every field has its own attributes. Attributes of a field can be given values when

using "Create pass" or "Update pass" API. Followings are replacement rules of

fields:

● Only Dynamic fields can be given values. A field which is configured as Dynamic

when designing the Model is a Dynamic field.

● If you don’t specify custom data to fields in API, the default data of the fields

of the model will be used.

● If you don’t specify data to attributes of a field in API, the default attributes of

the field of the model will be used.

● If you specify custom data for a field in API, API will set the custom data to the

field and keep the field data as customized. The field data will not be updated

even if updating the model unless you use "Update pass" API to update the

field data.

● If you want to remove the customized data of the field and reset it to the

default field data of the model, please use the "Delete custom field" API.

● If you specify an empty value to an attribute of a field (ex:

"fields":[{"key":"field1","label":""}] "), API will give an empty value to the

attribute.

15

Name Type Description

fields

an array of

JSON

objects

An array of field objects. You can specify an array of field

objects that are configured to be Dynamic when designing the

model.

key string (100) This is a unique identifier for the specified model field that can
be defined on Model Designer.

label string (150) Label text for the field.

value
string

(5000)
Value of the field. It can be a string, ISO 8601 date format as a
string, or number.

changeMessage string (80)

Format string for the alert text that is displayed when the pass is
updated. The format string must contain the escape %@, which
is replaced by the field’s new value. For example, "Get changed
to %@". If you don’t specify a change message, the user isn’t
notified when the field changes.

Create pass

Create a unique pass from the specified model by customizing attributes and Dynamic

fields of the model.

URL Structure

Method URL

POST https://api.pass2u.net/v2/models/{modelId}/passes?utm_source={utm_so
urce}

Name Type Required Description

modelId number Yes
The unique ID for the specified model you are using to

create the pass. You can find modelId in Dashboard.

utm_source string No

The utm_source is the name you give to track the issuing

amount of the interested channel. For example, if you

have a campaign on social media, on an official website /

app, you can use a separate utm_source for each to
record the issuing amount automatically in Dashboard.

16

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: application/json

Example Request Body

Following is an example of the JSON payload used to create a membership card from

the specified model:

The membership card has the member’s name, date of birth, member level, profile

photo, expiration date and relevant locations that the member preferred. In addition,

configuring background color to distinguish different member levels that are intended

to enhance users' experience. All values provided will replace default values of the

model.

{

 "expirationDate":"2018-12-31T23:00:15+08:00",
 "foregroundColor":"rgb(51, 50, 46)",
 "backgroundColor":"rgb(237, 219, 21)",
 "labelColor":"rgb(196, 54, 39)",
 "sharingProhibited":true,
 "fields":[

 {
 "key":"name",
 "label":"Name",
 "value":"Fi-Lin,Chen"

 },{
 "key":"birth",
 "label":"Birth",
 "value":"Dec’10 1999"

 },
 {

 "key":"level",
 "label":"Level",
 "value":"GOLD"

 }
],
 "barcode":{

 "message":"1234567890",

17

 "altText":"1234567890"
 },
 "images":[

 {
 "type":"thumbnail",
 "hex":"d33b9f1426d363340c2946557f173c402cd74014"

 }
],
 "locations":[

 {
 "latitude":25.0413093,
 "longitude":121.55269329999999,
 "relevantText":"Store nearby on 1st and Main."

 },
 {

 "latitude":12.0413093,
 "longitude":181.3226,
 "relevantText":"Take a break with Bistro Coffee"

 }
]}

HTTP Response Header
Content-Type: application/json

Example Response Body
If the call is successful, Pass2U returns passId and created time.

{

 "barcodeMessage":"1234567890",
 "modelId":1919,
 "passId":"VT-2I77F5ADz",
 "createdTime":"2018-01-25T16:19:36+08:00",
 "expirationDate":"2018-12-31T23:00:15+08:00"

}

Name Description

barcodeMessage The Information specified to the pass’s barcode.

nfcMessage The Information specified to the pass’s NFC message.

modelId The unique ID of the model this pass created from.

18

passId The unique ID of the created pass you should keep. When updating this
pass, please provide this passId.

createdTime The date and time when the pass is created.

expirationDate The date and time when a pass expires and whether it is still valid. After
the expiration date, the pass is automatically voided.

The publicly accessible URL for downloading the pass is:

https://www.pass2u.net/d/{passId}

Update pass
Update a generated pass by adding or changing customizable attributes and dynamic

fields of the model. A notification message will be sent to mobile devices of the pass

holders and shown on lock screens (e.g. latest news, balances, points, special

discount, customer information, records...).

URL Structure

Method URL

PUT https://api.pass2u.net/v2/models/{modelId}/passes/{passId}

Name Type Required Description

modelId number Yes

The unique ID of the specified model you want to update

the specified pass from. You can find modelId in

Dashboard.

passId string Yes The unique ID of the specified pass you want to update.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: application/json

Example Request Body

19

{

 "expirationDate":"2019-12-31T23:00:15+08:00",
 "foregroundColor":"rgb(51, 50, 46)",
 "backgroundColor":"rgb(211, 79, 46)",
 "labelColor":"rgb(196, 54, 39)",
 "fields":[

 {
 "key":"level",
 "label":"Level",
 "value":"DIAMON",
 "changeMessage":"You get highest and most rewarding level %@"

 }
],

}

HTTP Response Header

Content-Type: application/json

Example Response Body

If the call is successful, passId and updated time will be returned.

{

 "barcodeMessage":"1234567890",
 "modelId":1919,
 "passId":"VT-2I77F5ADz",
 "updatedTime":"2018-01-25T16:19:36+08:00",
 "expirationDate":"2018-12-31T23:00:15+08:00"

}

Name Description

barcodeMessage The information specified to the pass’s barcode.

nfcMessage The Information specified to the pass’s NFC message.

modelId The unique ID of the model this pass created from.

passId The unique ID of the created pass you should keep. Use this passId to
manipulate the pass hereafter.

updatedTime The date and time when the pass is updated.

expirationDate The date and time when the pass expires.

20

Reset pass attribute

Reset a customized Top-Level Key or Lower-Level Key attribute of the specified

pass to use the default value of the model (e.g. logo text, colors, relevant date,

expiration date...).

URL Structure

Method URL

DELETE https://api.pass2u.net/v2/models/{modelId}/passes/{passId}/attributes/{att
ributeName}

Name Type Required Description

modelId number Yes

The unique ID of the specified model you want to reset

the custom attributes of the pass from. You can find

modelId in Dashboard.

passId string Yes
The unique ID of the specified pass you want to reset the

custom attributes from.

attributeName string Yes
The unique Top-Level Key or Lower-Level Key attribute

of the pass you want to reset.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: application/json

HTTP Request Body

none

HTTP Response Header

Content-Type: application/json

21

HTTP Response Body

Returns an HTTP status of 200 if the call is successful.

none

Reset custom field

Reset a custom field of the specified pass to use the default field data of the model.

URL Structure

Method URL

DELETE https://api.pass2u.net/v2/models/{modelId}/passes/{passId}/fields/{fieldK
ey}

Name Type Required Description

modelId number Yes

The unique ID of the specified model you want to reset

the custom field of the pass from. You can find modelId

in Dashboard.

passId string Yes
The unique ID of the specified pass you want to reset the

field from.

fieldKey string Yes
The unique key of the customized field you want to reset.

It must be defined in the model.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: application/json

HTTP Request Body

none

HTTP Response Header

22

Content-Type: application/json

HTTP Response Body

Returns an HTTP status of 200 if the call is successful.

none

Reset field attribute

Reset an attribute of the customized field to use the default field attribute of the model.

URL Structure

Method URL

DELETE https://api.pass2u.net/v2/models/{modelId}/passes/{passId}/fields/{fieldK
ey}/attributes/{attributeName}

Name Type Required Description

modelId number Yes

The unique ID of the specified model you want to reset the

custom field attribute of the pass from. You can find

modelId in Dashboard.

passId string Yes
The unique ID of the specified pass you want to reset the

field attributes from.

fieldKey string Yes
The unique key of the customized field you want to reset

the field attributes from.

attributeName string Yes
The name of the field attribute of the specified pass you

want to reset.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: application/json

HTTP Request Body

23

none

HTTP Response Header

Content-Type: application/json

HTTP Response Body

Returns an HTTP status of 200 if the call is successful.

none

Get pkpass file

If you want to distribute a pass via a web page or app other than the Pass2U web

page, you can use this API to get the pkpass file directly.

URL Structure

Method URL

GET https://api.pass2u.net/v2/models/{modelId}/passes/{passId}

Name Type Required Description

modelId number Yes
The unique ID of the specified model you want to get the

specified pass from.

passId string Yes The unique ID of the specified pass you want to get.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/vnd.apple.pkpass

Content-Disposotion: attachment; filename=pass.pkpass

HTTP Response Header

Content-Type: application/vnd.apple.pkpass

24

HTTP Response Body

Returns an HTTP status of 200 if the call is successful.

MIME type .pkpass file binary stream.

Get pass status

URL Structure

Method URL

GET https://api.pass2u.net/v2/models/{modelId}/passes/{passId}/status

Name Type Required Description

modelId number Yes
The unique ID of the specified model you want to query

the specified pass from.

passId string Yes The unique ID of the specified pass you want to query.

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

HTTP Request Body

none

HTTP Response Header

Content-Type: application/json

HTTP Response Body

Returns an HTTP status of 200 if the call is successful.

{

 "passId":"VT-2I77F5ADz",

25

 "devices":[
 {

 "brand":"iPhone",
 "model":"XR",
 "installedATime":"2019-12-31T23:00:15+08:00"

 }
],
 "redemptions":[

 {
 "campaignId": 2455,
 "campaignName":"NIKE Run",
 "checkoutAccount":"Betty",
 "storeName":"HK No.1",
 "redeemedTime":"2019-12-31T23:00:15+08:00"

 }
],

}

Name Description

passId The unique ID of the created pass you query.

devices An array to indicate which devices ever install the pass.

brand The brand name of the installed device.

model The model name of the installed device.

installedTime The date and time when the pass installed in the device.

redemptions An array to indicate which one-time redemption campaigns redeem the
pass.

campaignId The ID of the redemption campaign.

campaignName The name of the redemption campaign.

checkoutAccount The Pass2U Checkout account name who redeemed the pass.

storeName The name of the store which Pass2U Checkout account who redeemed
the pass belongs to.

redeemedTime The date and time when the pass is redeemed.

Upload pass image
When creating or updating the pass, you may want to replace the default model image

with a new image. The model style defines which types of images can be assigned.

Please refer to Apple Wallet Developer Guide to learn more about image types for

26

different styles.

Pass Type Supported images

Boarding Pass Icon, Logo, Footer

Coupon Icon, Logo, Strip

Eventicket - Layout 1 Icon, Logo, Background, Thumbnail

Eventicket - Layout 2 Icon, Logo, Strip

Store Card Icon, Logo, Strip

Generic Icon, Logo, Thumbnail

URL Structure

Method URL

POST https://api.pass2u.net/v2/images

HTTP Request Header

x-api-key: {x-api-key}

Accept: application/json

Content-Type: image/png

27

HTTP Request Body

The image binary data.

Upload limitations

● Format supported: png

● Maximum file size is: 4MB

● Maximum image dimensions are: 1024 px х 1024 px

Recommended Image dimensions

Image Type Width Height

Icon 58 58

Logo 320 100

Strip 750 288

Thumbnail 180 180

Background 360 440

Footer 572 30

HTTP Response Header

Content-Type: image/png
Content-Disposition: attachment; filename={imageName}.png

Example Response Body

{

 "hex":"89b9a6edb1132bae969711230ef63e3fb367f34e"
}

28

Name Description

hex The hexadecimal The unique hex for the image you may use if the pass have to be
 customized the image.

Error Codes

HTTP Status Code Error Code Retry

400 Bad Request Exception No

403 Access Denied Exception No

404 Not Found Exception No

405 Bad Method No

405 HTTP Not Acceptable No

409 Conflict Exception No

415 HTTP Unsupported Type No

429 Too Many Requests Exception Yes

503 Service Unavailable Exception Yes

504 Endpoint Request Timed-out Exception Yes

Sample Error Response

{

 "message":"error"
}

Callback to Webhook Url

If you generated a pass which is not created by API or a pass is installed in a user

device, you can get the notification by HTTP POST when the relevant webhook urls

are specified. You can assign pass generating and installation webhook urls in step 3

“Configure Model Issuing Settings” in the Model issuing process.

29

Or edit “Issuing Settings” after the model is issued

30

Pass Generated Event

URL Structure

Method URL

POST Your pass generating webhook url (HTTPS is required) and will be called
by Pass2U

Name Type Description

modelId number
The unique ID of the specified model which the generated pass

belongs to. You can find modelId in Dashboard.

passId string The unique ID of the generated pass.

distributedAt string The date and time when pass is generated in ISO 8601 format.

HTTP Request Header

Content-Type: application/json

Example Request Body

{

 "passId": "fjnUGLFqLst9",

"distributedAt": "2018-12-10T09:41:50+08:00",

"modelId": 2126

}

Pass Installed Event

URL Structure

Method URL

POST Your pass installation webhook url (HTTPS is required) and will be called
by Pass2U

31

Name Type Description

modelId number
The unique ID of the specified model which the installed pass belongs

to. You can find modelId in Dashboard.

passId string The unique ID of the installed pass.

installedAt string The date and time when pass is installed in ISO 8601 format.

HTTP Request Header

Content-Type: application/json

Example Request Body

{

 "passId": "fjnUGLFqLst9",

"installedAt": "2018-12-10T09:41:50+08:00",

"modelId": 2126

}

